EXERCICE 1: DOSAGE D'UNE EAU OXYGENEE DANS UN LIQUIDE D'ENTRETIEN POUR LENTILLES DE CONTACT (8 points)

Les parties A et B sont indépendantes.

Pour entretenir ses lentilles, Emma utilise le produit «CLEAN 3 en 1» dont voici la notice :

Description du système «CLEAN 3 en 1»: c'est un système qui permet, en toute sécurité, l'entretien des lentilles. Chaque coffret «CLEAN 3 en 1» contient:
- une solution oxydante nommée S contenant une solution de peroxyde d'hydrogène (H₂O₂) à environ 3% ;
- un comprimé dit «de neutralisation» contenant de la catalase.

Composition : 1 mL de solution oxydante contient environ 30 mg de peroxyde d'hydrogène.

Précautions particulières d'utilisation :
La solution S possède une durée de conservation limitée. (Voir date de péremption au dos de la boîte).
Ne jamais mettre la solution S directement dans l'œil, ni poser directement sur les yeux les lentilles prélevées dans la solution «non neutralisée». Dans un tel cas, retirer immédiatement les lentilles et rincer abondamment les yeux à l'eau courante.

PARTIE A : On se propose de vérifier la composition en peroxyde d'hydrogène de la solution commerciale S « non neutralisée ».

1. On veut préparer 100,0 mL de solution S₁ en diluant 20 fois la solution commerciale S. Nommer le matériel nécessaire pour réaliser cette dilution.

2. Dans un bécher n° 1, on introduit V₁ = 20,0 mL de solution S₁. La solution aqueuse de peroxyde d'hydrogène est dosée par une solution de permanganate de potassium acidifiée de concentration molaire C₂ = 2,00x10⁻² mol.L⁻¹. Faire le schéma annoté du dispositif de dosage.

3. Les demi-équations électroniques des couples oxydo-réducteurs intervenant dans le dosage sont :

\[\text{MnO}_4^- + 8 \text{H}^+ + 5 e^- = \text{Mn}^{2+} + 4 \text{H}_2\text{O}\]
\[\text{O}_2 + 2 \text{H}^+ + 2 e^- = \text{H}_2\text{O}_2\]

3.1. Recopier les demi-équations précédentes et souligner les réactifs.

3.2. Ecrire l'équation d'oxydoréduction correspondant au dosage.

3.3. Quelle espèce chimique, parmi les réactifs, joue le rôle de l'oxydant dans la réaction de dosage ? Justifier.

4. Étude de l'équivalence.

4.1. Définir de façon générale l'équivalence d'un dosage.
4.2. Montrer qu’à l’équivalence, la relation entre la quantité de matière n_1 de peroxyde d’hydrogène présent dans 20,0 mL de solution S₁ et la quantité de matière n_2 d’ions permanganate MnO_4^- introduits est : $n_1 = \frac{5}{2} \cdot n_2$.

4.3. Le volume versé à l’équivalence est $V_E = 18,0$ mL. En déduire n_2.

4.4. Montrer que n_1 est égale à 9,00x10⁻⁴ mol.

4.5. En déduire la masse m_1 de peroxyde d’hydrogène correspondante, sachant que la masse molaire du peroxyde d’hydrogène $\text{M(H}_2\text{O}_2)$ est égale à 34 g.mol⁻¹.

5. Calculer la masse m de peroxyde d’hydrogène présente dans 20,0 mL de solution commerciale S.

6. En déduire la masse de peroxyde d’hydrogène présente dans 1 mL de solution commerciale S. Comparer avec la composition donnée sur la notice.

PARTIE B : On étudie à présent l’action du comprimé dit « de neutralisation » sur la solution commerciale S d’entretien des lentilles.

Une solution aqueuse de peroxyde d’hydrogène se décompose lentement au cours du temps en dioxygène et en eau selon l’équation : $2 \text{H}_2\text{O}_2 \rightarrow \text{O}_2 + 2 \text{H}_2\text{O}$.

1. Dans un becher n°2, on introduit 20,0 mL de solution S et on ajoute le comprimé de « neutralisation ». Des bulles apparaissent à la surface.

La seule réaction se produisant étant celle de décomposition du peroxyde d’hydrogène, préciser le nom de l’espèce chimique contenue dans les bulles.

2. On constate que le becher n°2 contient moins de peroxyde d’hydrogène que le becher n°1.

2.1 En déduire le rôle de la catalase contenue dans le comprimé de « neutralisation ».

2.2 Comment évolue l’efficacité de « CLEAN 3 en 1 » au cours du temps ? Expliquer pourquoi Emma doit être attentive à la date de péremption indiquée sur l’emballage.