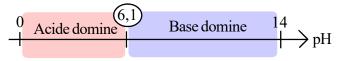
Exercice 12. Hydroxylamine.


1°) La réaction de l'hydroxylamine NH_2OH avec l'eau est: $NH_2OH + H_2O = NH_3OH^+ + HO^-$.

2°) Attention la constante d'acidité Ka de ce couple n'est pas associée à la réaction écrite précédemment ! Mais à la réaction:

$$NH_{3}OH^{+} + H_{2}O = NH_{2}OH + H_{3}O^{+}.$$

$$K_{A} = \frac{[NH_{2}OH]_{f}x[H_{3}O^{+}]_{f}}{[NH_{2}OH^{+}]_{f}xc^{\circ}}$$

3°) Le diagramme de prédominance.

4°) A pH = 9,5 donnée dans l'énoncé, l'espèce chimique dominante est la base du couple donc NH₂OH, car pH > pK_{Δ}

$$\begin{aligned} &\text{On a l'expression K}_{A} = \frac{\left[\text{NH}_{2}\text{OH} \right]_{f} x \left[\text{H}_{3}\text{O}^{+} \right]_{f}}{\left[\text{NH}_{3}\text{OH}^{+} \right]_{f} x \, c^{\circ}} \\ &\text{Ce qui donne } \frac{\left[\text{NH}_{2}\text{OH} \right]_{f}}{\left[\text{NH}_{3}\text{OH}^{+} \right]_{f}} &= \frac{K_{A}}{\left[\text{H}_{3}\text{O}^{+} \right]_{f}} &= \frac{10^{\text{-pKA}}}{10^{\text{-pH}}} = 10^{\text{pH-pKA}} \end{aligned}$$

$$&\text{Donc } \frac{\left[\text{NH}_{2}\text{OH} \right]_{f}}{\left[\text{NH}_{3}\text{OH}^{+} \right]_{f}} &= 10^{9.5 \cdot 6.1} = 10^{3.4} = 2 \, 512$$

Cela signifie bien qu'à pH = $9.5 [NH_2OH]_f >> [NH_3OH^+]_f$ donc que NH₂OH est l'espèce dominante.

Exercice 14. Calculer une constante d'acidité.

1°) La réaction de l'acide salicylique $C_7H_6O_3$ avec l'eau est: $C_7H_6O_3+H_7O=C_7H_5O_3^2+H_7O^+$.

2°) La constante d'acidité Ka du couple $C_7H_6O_3/C_7H_5O_3^-$ est associée à la réaction écrite précédemment

$$K_{A} = \frac{[C_{7}H_{5}O_{3}^{-}]_{f}x[H_{3}O^{+}]_{f}}{[C_{7}H_{6}O_{3}]_{f}xc^{\circ}}$$

3°) Pour un équilibre donné on a:

$$[C_7H_5O_3^-] = 1.8 \times 10^{-3} \text{ mol/L};$$

 $[C_7H_6O_3] = 3.2 \times 10^{-3} \text{ mol/L}.$

A noter que $[H_3O^+]_f = [C_7H_5O_3^-]_f = 1.8 \times 10^{-3} \text{ mol/L};$

On peut donc calculer la constante d'acidité Ka.

$$K_{A} = \frac{\left[C_{7}H_{5}O_{3}^{-1}_{f}x\left[H_{3}O^{+}\right]_{f}}{\left[C_{7}H_{6}O_{3}\right]_{f}x\,c^{\circ}} = \frac{(1.8 \times 10^{-3})^{2}}{3.2 \times 10^{-3}} = 1.0 \times 10^{-3}$$

4°) En peut en déduire pKa = $-\log(K_A) = -\log(1.0 \times 10^{-3}) = 3.0$

Exercice 15. Acide ascorbique.

1°) La réaction de l'acide ascorbique $C_6H_8O_6$ avec l'eau est: $C_6H_8O_6+H_2O=C_6H_7O_6^-+H_3O^+.$

D'où un tableau d'avancement:

	$C_6H_8O_6 + H_2O = C_6H_7O_6 + H_3O^+$.			
Initial	n_0	excès	0	0
Intermediaire	n ₀ - x	excès	X	х
Max	n ₀ - x _m	excès	X _m	X _m
Final	n ₀ - x _f	excès	X _f	X _f

2°) On calcule la quantité initiale $n_0 = \frac{m}{M} = \frac{0.88}{176.0} = 5.0 \times 10^{-3} \text{ mol}$

	C ₆ H ₈ O ₆	+ H ₂ O =	C ₆ H ₇ O ₆	+ H ₃ O+.
Initial	n_0	excès	0	0
Intermediaire	n ₀ - x	excès	X	X
Max	$n_0 - x_m$	excès	X _m	X _m
Final	n ₀ - x _f	excès	X _f	$\left(X_{f}\right)$

Pour déterminer l'avancement x_{max} , on fait l'hypothèse que l'acide ascorbique est totalement consonné, donc $x_{max} = n_0 = 5,0 \times 10^{-3}$ mol.

Pour déterminer l'avancement réellement atteint, je me rends compte dans le tableau d'avancement que:

$$x_f = n(H_3O^+)_f = [H_3O^+]_f \times V = 10^{-2.7} \times 100 \times 10^{-3} = 10^{-3.7} \text{ mol}$$

 $x_f = 2.0 \times 10^4 \text{ mol}$

3°) On aura donc:

☐ taux d'avancement théorique

$$x_{max} = 5.0 \times 10^{-3} \text{ mol} = 50 \times 10^{-4} \text{ mol}.$$

☐ taux d'avancement réel

$$x_f = 2.0 \times 10^{-4} \text{ mol}$$

On voit $x_f < x_{max}$ donc la réaction n'est pas totale.

Exercice 16. Acide perchlorite.

1°) La réaction de l'acide perchlorite $HC\ell O_4$ avec l'eau est: $HClO_4 + H_2O = ClO_4 + H_3O^+$.

D'où un tableau d'avancement:

	HClO ₄ -	H ₂ O =	ClO ₄ +	H ₃ O ⁺ .
Initial	n_0	excès	0	0
Intermediaire	n ₀ - x	excès	X	X
Max	n ₀ - x _m	excès	X _m	X _m
Final	n ₀ - x _f	excès	\mathbf{X}_{f}	X _f

2°) On calcule la quantité initiale :

$$n_0 = C \times V = 7.94 \times 10^{-3} \times 20 \times 10^{-3} = 1.6 \times 10^{-4} \text{ mol}$$

	HClO ₄	$+H_2O =$	ClO ₄ +	H ₃ O ⁺ .
Initial	n _o	excès	0	0
Intermediaire	n ₀ - x	excès	X	X
Max ($n_0 - X_m$	excès	X _m	X _m
Final	$n_0 - \chi_f$	excès	\mathbf{X}_{f}	$X_{\rm f}$
		•		

Pour déterminer l'avancement x_{max} , on fait l'hypothèse que l'acide perchlorite est totalement consormé, donc $x_{max} = n_0 = 1,6 \times 10^4 \text{ mol.}$

Pour déterminer L'avancement réellement atteint, je me rends compte dans le tableau d'avancement que:

$$x_f = n(H_3O^+)_f = [H_3O^+]_f \times V = 10^{-2.1} \times 20 \times 10^{-3} = 1.6 \times 10^{-4} \text{ mol}$$

3°) On aura donc:

 \Box taux d'avancement théorique $x_{max} = 1.6 \times 10^{-4} \text{ mol}$

 \Box taux d'avancement réel $x_c = 1.6 \times 10^4 \text{ mol}$

On voit $x_f = x_{max}$ donc la réaction est totale.

Exercice 17. Acide formique.

1°) La réaction de l'acide formique HCOOH avec l'eau est: $HCOOH + H_2O = HCOO^- + H_2O^+$.

D'où un tableau d'avancement:

	$\text{HCOOH} + \text{H}_2\text{O} = \text{HCOO}^- + \text{H}_3\text{O}^+.$			
Initial	n_0	excès	0	0
Intermediaire	n ₀ - x	excès	X	X
Max	n ₀ - x _m	excès	\mathbf{X}_{m}	X _m
Final	n ₀ - x _f	excès	\mathbf{X}_{f}	\mathbf{x}_{f}

2°) On calcule la quantité initiale :

$$n_0 = C \times V = 1.0 \times 10^{-3} \times 50 \times 10^{-3} = 5.0 \times 10^{-5} \text{ mol}$$

	$HCOOH + H_2O = HCOO^- + H_3O^+.$			
Initial	n_0	excès	0	0
Intermediaire	n ₀ - x	excès	X	X
Max	$n_0 - x_m$	excès	X _m	X _m
Final	n ₀ - x	excès	X _f	$\left(\begin{array}{c} \mathbf{x}_{\mathrm{f}} \end{array}\right)$

Pour déterminer l'avancement x_{max} , on fait l'hypothèse que l'acide formique est totalement consommé, donc $x_{max} = n_0 = 5.0 \times 10^{-5}$ mol.

Pour déterminer l'avancement réellement atteint, je me rends compte dans le tableau d'avancement que:

$$x_f = n(H_3O^+)_f = [H_3O^+]_f \times V = 10^{-3.5} \times 50 \times 10^{-3} = 1.6 \times 10^{-5} \text{ mol}$$

3°) On aura donc:

- \Box taux d'avancement théorique $x_{max} = 5.0 \times 10^{-5} \text{ mol}$
- \Box taux d'avancement réel $x_r = 1.6 \times 10^{-5} \text{ mol}$

On voit $x_f < x_{max}$ donc la réaction est limitée et l'acide formique est un acide faible.

Exercice 18. Acide bromhydrique.

1°) La réaction de l'acide bromydrique HBr avec l'eau est: $HBr + H_2O = Br - + H_3O^+$.

D'où un tableau d'avancement:

	HBr +	H ₂ O =	= HBr	+ H ₃ O+.
Initial	n _o	excès	0	0
Intermediaire	n ₀ - x	excès	X	X
Max	n ₀ - x _m	excès	\mathbf{X}_{m}	X _m
Final	n ₀ - x _f	excès	X _f	\mathbf{x}_{f}

2°) On calcule la quantité initiale :

$$n_0 = C \times V = 2.51 \times 10^{-3} \times 50 \times 10^{-3} = 1.3 \times 10^{-4} \text{ mol}$$

	HBr +	H ₂ O =	= HBr - +	H ₃ O ⁺ .
Initial	n_0	excès	0	0
Intermediaire	n ₀ - x	excès	X	X
Max	$(n_0 - x_m)$	excès	X _m	X _m
Final	n ₀ - x ₁	excès	X _f	X _f
				_

Pour déterminer l'avancement x_{max} , on fait l'hypothèse que l'acide bromydrique est totalement consommé, donc $x_{max} = n_0 = 1.3 \times 10^4$ mol.

Pour déterminer l'avancement réellement atteint, je me rends compte dans le tableau d'avancement que: $x_f = n(H_3O^+)_f = [H_3O^+]_f x \; V = 10^{-2.6} \, x \; 50 \, x \; \; 10^{-3} = \; 1,3 \; x \; 10^{-4} \, mol$

$$x = n(H O^{+}) = [H O^{+}] \times V = 10^{-2.6} \times 50 \times 10^{-3} = 1.3 \times 10^{-4} \text{ mo}$$

3°) On aura donc:

- \Box taux d'avancement théorique $x_{max} = 1.3 \times 10^{-4} \text{ mol}$
- ☐ taux d'avancement réel $x_c = 1.3 \times 10^{-4} \text{ mol}$

On voit $x_f = x_{max}$ donc la réaction est totaleet l'acide bromhydrique est un acide fort.

Exercice 20. Solution d'hydroxyde de sodium.

1°) L'hydroxyde de sodium solide a pour formule NaOH (sol)

L'équation de dissolution de l'hydroxyde de sodium est donc:

$$NaOH_{(sol)} \longrightarrow Na^{+}_{(aq)} + HO^{-}_{(aq)}$$

2°) A la vue de l'équation, il se libère autant d'ion HO que de soude dissout.

On a donc n m 4,0

$$[HO^{-}]=C=\frac{}{V}=\frac{}{M \times V}=\frac{4,0}{40.0 \times 100 \times 10^{-3}}=1,0 \text{ mol/L}$$

3°) On applique la relation $Ke = [HO^-] \times [H,O^+]$.

Ce qui donne
$$[H_3O^+] = \frac{Ke}{[HO^-]} = 10^{-14} \text{mol/L}$$

4°) Le pH de la solution: pH = $-\log([H_3O^+]) = 14$

Exercice 21. Solution de base faible.

L'ammoniac NH₃ est une base faible de $Ka = 6.3 \times 10^{-10}$.

1°) La réaction de l'ammoniac NH, avec l'eau est:

$$NH_3 + H_2O = NH_4^+ + HO^-$$
.

2°) La constante d'équilibre de la réaction.

$$K = \frac{[NH_4^+]_f x [HO^-]_f}{[NH_3]_f x c^{\circ}}$$

3°) Equation de la réaction du couple NH₄⁺/NH₃, associée à la constante d'équilibre Ka du couple:

$$NH_4^+ + H_2O = NH_3 + H_3O^+$$

La constante d'acidité Ka du couple.

$$K_{A} = \frac{[NH_{3}]_{f} x [H_{3}O^{+}]_{f}}{[NH_{4}^{+}]_{f} x c^{\circ}}$$

4°) Equation de la réaction associée à la constante d'équilibre Ke.

$$H_2O + H_2O = HO^- + H_3O^+$$

 $K_a = [HO^-]_E \times [H_3O^+]_E = 10^{-14}$

5°) A partir de la constante d'acidité Ka du couple.

$$K_{A} = \frac{[NH_{3}]_{f} x [H_{3}O^{+}]_{f}}{[NH_{4}^{+}]_{f} x c^{\circ}} \quad \text{on en d\'eduit} \underbrace{\begin{bmatrix} [NH_{4}^{+}]_{f} \\ [NH_{3}]_{f} \end{bmatrix}}_{[NH_{3}]_{f}} = \frac{[H_{3}O^{+}]_{f}}{K_{A} x c^{\circ}}$$

La constante K.

$$K = \frac{[NH_4^+]_f x [HO]_f}{[NH_3]_f x c^{\circ}} \text{ soit} \qquad K = \frac{[NH_4^+]_f}{[NH_3]_f} x [HO]_f$$

Soit K =
$$\frac{[NH_4^+]_f}{[NH_3]_f} x [HO^-]_f = \frac{[H_3O^+]_f}{K_A} x [HO^-]_f$$

Soit
$$K = \frac{[H_3O^+]_f x [HO^-]_f}{K_A} = \frac{K_e}{K_A} = \frac{10^{-14}}{6.3 \times 10^{-10}} = 1.6 \times 10^{-5}$$

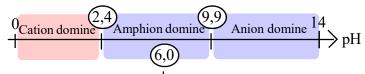
Acides aminés.

Exercice 22. Alanine.

1°) Les groupes caractéristiques.

Groupe amine
$$H_2N$$
 OH Groupe carboxyle

2°) Formule de l'amphion formé.


 $3^\circ)\,L$ 'amphion est un ampholyte. Les deux couples acide/base auxquels il appartient.

$$^{+}NH_{3}$$
 O NH_{2} O

Amphion/Anion

Cation/Amphion

4°) Diagramme de prédominance de l'alanine.

5°) A pH = 6, l'espéce prédominante est l'amphion car on est dans sa zone de prédominance d'après le diagramme.